THE GROUPS OF STEINER IN PROBLEMS OF CONTACT

(SECOND PAPER)*

ВY

LEONARD EUGENE DICKSON

- 1. Denote by G the group of the equation upon which depends the determination of the curves of order n-3 having simple contact at $\frac{1}{2}n(n-3)$ points with a given curve C_n of order n having no double points. The case in which n is odd was discussed in the former paper (Transactions, January, 1902) and G was shown to be a subgroup of the group defined by the invariants $\phi_3, \phi_4, \phi_5, \cdots$, the latter group being holoedrically isomorphic with the first hypoabelian group on 2p indices with coefficients taken modulo 2. For n even, G is contained in the group H defined by the invariants ϕ_4, ϕ_6, \cdots , with even subscripts. Jordan has shown ($Trait\acute{e}$, pp. 229-242) that H is holoedrically isomorphic with the abelian linear group A on 2p indices with coefficients taken modulo 2. The object of the present paper is to establish the latter theorem by a short, elementary proof, which makes no use of the abstract substitutions $[\alpha_1, \beta_1, \cdots, \alpha_p, \beta_p]$ of Jordan, and which exhibits explicitly the correspondence \dagger between the substitutions of the isomorphic groups.
- 2. We first define a non-homogeneous linear group A_1 on 2p indices which leaves the function $x_1y_1 + \cdots + x_py_p$ invariant modulo 2 and which is holoedrically isomorphic with the abelian group A. To the generators M_i , L_i , N_{ij} of A we make correspond the respective substitutions of A_1 :

$$\begin{split} \mu_i \colon & & x_i' = y_i, \qquad y_i' = x_i; \\ \lambda_i \colon & & x_i' = x_i + y_i + 1; \\ \nu_{ij} \colon & & x_i' = x_i + y_j, \qquad x_j' = x_j + y_i. \end{split}$$

Then to the general substitution of A,

S:
$$x'_{i} = \sum_{i=1}^{p} (\alpha_{ij} x_{j} + \gamma_{ij} y_{j}), \quad y'_{i} = \sum_{j=1}^{p} (\beta_{ij} x_{j} + \delta_{ij} y_{j}) \quad (i = 1, \dots, p),$$

will correspond the following substitution of A_1 :

^{*} Presented to the Society February 22, 1902. Received for publication January 13, 1902.

[†] It is shown in § 6 that this correspondence is in accord with that given by JORDAN.

$$\begin{aligned} x_i' &= \sum_{j=1}^p (\alpha_{ij} x_j + \gamma_{ij} y_j) + \sum_{j=1}^p \alpha_{ij} \gamma_{ij}, \\ \sigma &: \\ y_i' &= \sum_{j=1}^p (\beta_{ij} x_j + \delta_{ij} y_j) + \sum_{j=1}^p \beta_{ij} \delta_{ij} \end{aligned}$$
 $(i = 1, \dots, p).$

In fact, the general correspondence $S \sim \sigma$ includes the assumed correspondences

$$M_i \sim \mu_i$$
, $L_i \sim \lambda_i$, $N_{ij} \sim \nu_{ij}$ $(i, j=1, \dots, p)$.

Moreover, if $S_1 \sim \sigma_1$, it is readily verified that

$$\label{eq:mass_substitute} M_i\,S_1 \!\sim\! \mu_i\sigma_1, \qquad L_iS_1 \!\sim\! \lambda_i\sigma_1, \qquad N_{ij}\,S_1 \!\sim\! \nu_{ij}\,\sigma_1 \quad (i,j\!=\!1,\cdots,p)\,.$$

Since the generators μ_i , λ_i , ν_{ij} leave invariant the function $x_1y_1 + \cdots + x_py_p$, the general substitution σ of the group A_1 will leave it invariant.

3. Theorem.*—The group A_1 may be represented as a doubly transitive substitution group on the $R_p \equiv 2^{2p-1} - 2^{p-1}$ letters $(x_1y_1x_2y_2\cdots x_py_p)$ in which $x_1, y_1, \cdots x_p, y_p$ assume every system of solutions, not all zero, of the congruence

(1)
$$x_1y_1 + x_2y_2 + \cdots + x_py_p \equiv 1 \pmod{2}$$
.

That A_1 is transitive on the R_p letters may be shown by the usual methods of linear group theory, or directly by the following remark. Let $(\alpha_1 \gamma_1 \cdots \alpha_p \gamma_p)$ be an arbitrary one of the letters. Then $\alpha_1 \gamma_1 + \cdots + \alpha_p \gamma_p \equiv 1 \pmod{2}$. One substitution which belongs to A_1 and which replaces $(11\ 00\ \cdots 00)$ by $(\alpha_1 \gamma_1 \cdots \alpha_p \gamma_p)$ is the following:

$$\begin{aligned} x_1' &= (\alpha_1 \gamma_1 + \alpha_1 + \gamma_1) x_1 + (\alpha_1 + 1) y_1 + \sum_{i=2}^{p} \left\{ (\alpha_1 + 1) \gamma_i x_i + (\alpha_1 + 1) \alpha_i y_i \right\} \\ &+ (\alpha_1 + 1) (\gamma_1 + 1), \end{aligned}$$

$$y_1' = (\gamma_1 + 1)x_1 + (\alpha_1\gamma_1 + \alpha_1 + \gamma_1)y_1 + \sum_{i=2}^{p} \{(\gamma_1 + 1)\gamma_i x_i + (\gamma_1 + 1)\alpha_i y_i\} + (\alpha_1 + 1)(\gamma_1 + 1),$$

$$x'_{j} = \alpha_{j}(\gamma_{1} + 1)x_{1} + \alpha_{j}(\alpha_{1} + 1)y_{1} + (\alpha_{j}\gamma_{j} + 1)x_{j} + \alpha_{j}y_{j}$$

$$+\sum \hat{} (\alpha_j \gamma_i x_i + \alpha_j \alpha_i y_i) + \alpha_j (\alpha_1 + \gamma_1 + 1),$$

$$y'_{j} = \gamma_{j}(\gamma_{1} + 1)x_{1} + \gamma_{j}(\alpha_{1} + 1)y_{1} + \gamma_{j}x_{j} + (\alpha_{j}\gamma_{j} + 1)y_{j} + \sum_{i} (\gamma_{i}\gamma_{i}x_{i} + \gamma_{i}\alpha_{i}y_{i}) + \gamma_{i}(\alpha_{1} + \gamma_{1} + 1),$$

where \sum denotes the summation $i = 2, \dots, p$; $i \neq j$.

^{*} For other applications one might employ the theorem that the group A_1 permutes transitively the 2^{2p} functions $a_1x_1 + b_1y_1 + \cdots + a_px_p + b_py_p + a_1b_1 + \cdots + a_pb_p$.

To prove that the group is doubly transitive, it now suffices to show that the subgroup leaving the letter (11 00 \cdots 00) fixed is transitive on the remaining letters. The conditions that the general substitution σ of A_1 shall leave fixed the letter (11 00 \cdots 00) are *

$$\alpha_{i1} + \gamma_{i1} + \sum_{j=1}^{p} \alpha_{ij} \gamma_{ij} \equiv \epsilon_{i1}, \qquad \beta_{i1} + \delta_{i1} + \sum_{j=1}^{p} \beta_{ij} \delta_{ij} \equiv \epsilon_{i1} \quad (i=1,\dots,p).$$

With these conditions satisfied, S belongs \dagger to the second hypoabelian group (with x_1 and y_1 playing the special rôle). Employing these conditions, we may give to σ the form:

$$\begin{split} x_i' &= \sum_{j=1}^p \left(\alpha_{ij} x_j + \gamma_{ij} y_j\right) + \alpha_{i1} + \gamma_{i1} + \epsilon_{i1}, \\ y_i' &= \sum_{j=1}^p \left(\beta_{ij} x_j + \delta_{ij} y_j\right) + \beta_{i1} + \delta_{i1} + \epsilon_{i1} \end{split}$$
 $(i=1,\cdots,p).$

It replaces (11 10 \cdots 00) by $(a_1 c_1 \ a_2 c_2 \cdots a_p c_p)$, where

To show that the second hypoabelian group contains a substitution S whose coefficients satisfy the conditions (2), we note that the inverse S^{-1} is obtained by replacing α_{ij} , β_{ij} , γ_{ij} , δ_{ij} by δ_{ji} , β_{ji} , γ_{ji} , α_{ji} , respectively, so that the conditions (2) give the following conditions on S^{-1} :

$$\delta_{2i} \equiv a_i + \epsilon_{i1}, \qquad \beta_{2i} \equiv c_i + \epsilon_{i1} \pmod{2} \qquad (i = 1, \dots, p).$$

Hence the coefficients of y_2' in S^{-1} are fully determined. Also

$$\begin{split} \beta_{21} + \delta_{21} + \sum_{i=1}^{p} \beta_{2i} \delta_{2i} &\equiv a_1 + c_1 + (a_1 + 1)(c_1 + 1) + \sum_{i=2}^{p} a_i c_i \\ &\equiv \sum_{i=1}^{p} a_i c_i + 1 \equiv 0 \pmod{2}. \end{split}$$

But \ddagger the second hypoabelian group contains such a substitution S^{-1} .

4. Theorem.—The groups H and A_1 are identical.

It is first shown that every substitution of A_1 belongs to H. By § 4 of the former paper, μ_i and ν_{ij} (which have the same form as M_i and N_{ij} , respectively)

^{*} Henceforth ϵ_{ij} denotes 1 if i=j, but denotes 0 if $i\neq j$.

[†] Bulletin of the American Mathematical Society, vol. 4 (1898), p. 504.

[†] DICKSON, Linear Groups, p. 202; or, American Journal of Mathematics, vol. 21 (1899), p. 227.

leave the functions ϕ_3 , ϕ_4 , ϕ_5 , ... invariant. Next, λ_1 replaces the general term of ϕ_4 by

$$(x'_1 + y'_1 + 1 \ y'_1 \cdots)(x''_1 + y''_1 + 1 \ y''_1 \cdots)(x'''_1 + y'''_1 + 1 \ y'''_1 \cdots)$$

 $(x'_1 + x''_1 + x'''_1 + y''_1 + y''_1 + y'''_1 + 1 \ y'_1 + y''_1 + y'''_1 \cdots),$

which is seen to be a term of ϕ_4 . In like manner, it may be shown that λ_1 leaves invariant ϕ_6 , ϕ_8 , \cdots ; but alters ϕ_3 , ϕ_5 , \cdots .

It is next shown that every substitution of H belongs to A_1 . Let L be an arbitrary substitution of H and let it replace the letters

$$l_1 \equiv (00 \ 11 \ 00 \ \cdots \ 00), \quad l_2 \equiv (10 \ 11 \ 00 \ \cdots \ 00)$$

by certain letters l'_1 , l'_2 , respectively. By § 3, A_1 contains a substitution L' which replaces l_1 by l'_1 and l_2 by l'_2 . Hence $M \equiv L'^{-1}L$ will belong to H and will leave fixed the letters l_1 , l_2 . Since M does not alter ϕ_4 , it will leave invariant the sum ψ of those terms of ϕ_4 which contain the factor $l_1 l_2$. The general term of ψ is therefore

$$l_1 l_2 (x_1 y_1 \ x_2 y_2 \ x_3 y_3 \ \cdots) (x_1 + 1 \ y_1 \ x_2 y_2 \ x_3 y_3 \ \cdots).$$

In view of (1), the last two expressions denote letters if, and only if,

$$\sum_{i=1}^{p} x_i y_i \equiv 1, \qquad y_1 \equiv 0 \pmod{2}.$$

But the letters l_1 and l_2 satisfy these congruences. Hence ψ involves exactly $2R_{p-1}$ letters. Hence M must permute amongst themselves the remaining $R_p-2R_{p-1}\equiv 2^{2p-2}$ letters, the general one of which is

(3)
$$(x_1 \ 1 \ x_2 y_2 \ x_3 y_3 \cdots), \qquad x_1 + \sum_{i=2}^p x_i y_i \equiv 1 \pmod{2}.$$

The substitutions of A_1 which leave unaltered the letters l_1 and l_2 permute transitively the 2^{2p-2} letters (3).

Indeed, by § 3, the substitutions of A_1 which leave l_1 fixed have the form

$$\begin{split} x_i' &= \sum_{j=1}^p \left(\alpha_{ij} x_j + \gamma_{ij} y_j \right) + \alpha_{i2} + \gamma_{i2} + \epsilon_{i2}, \\ y_i' &= \sum_{j=1}^p \left(\beta_{ij} x_j + \delta_{ij} y_j \right) + \beta_{i2} + \delta_{i2} + \epsilon_{i2} \end{split}$$
 $(i=1, \dots, p).$

The latter leaves l_2 fixed if, and only if,

$$\alpha_{11} = 1$$
, $\alpha_{21} = 0$, $\beta_{11} = 0$, $\beta_{21} = 0$, $\alpha_{i1} = \beta_{i1} = 0$ $(i = 3, \dots, p)$.

Let σ_1 denote the general substitution so defined and let S_1 denote the corresponding homogeneous substitution. Let $(c_1 1 \ c_2 d_2 \ c_3 d_3 \cdots)$ be an arbitrary letter of the form (3). The conditions that σ_1 shall replace (01 11 00 \cdots 00) by $(c_1 1 \ c_2 d_2 \cdots)$ are

(4)
$$c_1 = \gamma_{11}$$
, $1 = \delta_{11}$, $c_2 = \gamma_{21} + 1$, $d_2 = \delta_{21} + 1$, $c_i = \gamma_{i1}$, $d_i = \delta_{i1}$ $(i = 3, \dots, p)$.

To prove that there exists a substitution σ_1 satisfying the conditions (4) we follow the method used at the end of § 3. We observe that S_1^{-1} is the most general substitution of the second hypoabelian group (with x_2 , y_2 playing the special rôle) which leaves the index y_1 unaltered. The conditions (4) give the following conditions modulo 2 on S_1^{-1}

$$a_{11} \equiv 1, \ \gamma_{11} \equiv c_1, \ a_{12} \equiv d_2 + 1, \ \gamma_{12} \equiv c_2 + 1, \ a_{1i} \equiv d_i, \ \gamma_{1i} \equiv c_i \ (i = 3, \dots, p).$$

Hence the coefficients of x_1' in S_1^{-1} are fully determined. Also, by (3),

$$\alpha_{\!\scriptscriptstyle 12} + \gamma_{\!\scriptscriptstyle 12} + \sum_{i=1}^p \alpha_{\!\scriptscriptstyle 1i} \gamma_{\!\scriptscriptstyle 1i} \equiv 1 + c_{\!\scriptscriptstyle 1} + \sum_{i=2}^p c_i d_i \equiv 0 \pmod{2} \,.$$

But the second hypoabelian group contains a substitution of the form

$$y_1' = y_1, \quad x_1' = \sum_{i=1}^p \left(\alpha_{1i} x_i + \gamma_{1i} y_i \right), \ \cdots, \quad \left(\alpha_{12} + \gamma_{12} + \sum_{i=1}^p \alpha_{1i} \gamma_{1i} \equiv 0 \right), \ \alpha_{11} \equiv 1 \right).$$

Next, let M replace $l_3 \equiv (01\ 11\ 00\ \cdots\ 00)$ by a letter l_3' of the form (3). By the preceding result, A_1 contains a substitution T which replaces l_3 by l_3' . Hence M=TQ, where Q is a substitution of H which leaves fixed the letters $l_1,\,l_2,\,l_3$. By § 9 of the former paper, Q permutes amongst themselves the R_{p-1} letters $(00\ x_2y_2\ x_3y_3\ \cdots)$. The theorem may now be established by induction from p-1 to p. We proceed as in § 10 of the earlier paper, * deleting the functions ϕ_3 and $\phi_3^{(p-1)}$. As a basis for the induction, we show that the theorem is true for p=2, whence $R_p=6$. The six letters

$$(0011), (1011), (0111), (1100), (1101), (1110),$$

cannot be combined to give a term of ϕ_4 , so that the latter does not exist when p=2. Evidently ϕ_6 is the product of the six letters. Hence H is the symmetric group on six letters. But the order of the quaternary abelian group modulo 2 is $(2^4-1)2^3(2^2-1)2\equiv 6$! Hence the groups H and A_1 are identical when $p=2\dagger$.

^{*}One part of the proof by induction was there omitted, viz., the proof for the case p=2, whence $R_2=6$. That G_1 and Γ are identical follows from the equality of their orders (see § 11), or more simply since Q is, for p=2, either the identity or else is M_2 , permuting (1101) with (1110), and hence is hypoabelian

[†] For a direct proof of the holoedric isomorphism of the symmetric group on 6 letters and the quaternary abelian group modulo 2, see *Linear Groups*, p. 99.

5. It follows that the order w_p of H satisfies the recursion formula

$$w_{_{p}} = R_{_{p}}(\,R_{_{p}}-1\,)\,2^{2p-2}\cdot\frac{w_{_{p-1}}}{R_{_{p-1}}} \equiv (\,2^{2p}-1\,)\,2^{2p-1}\cdot w_{_{p-1}}.$$

Since $w_2 = (2^4 - 1)2^3(2^2 - 1)2$, we derive the result,

$$w_n = (2^{2p} - 1)2^{2p-1}(2^{2p-2} - 1)2^{2p-3} \cdots (2^2 - 1)2.$$

6. To show that the above correspondence of operators of the isomorphic groups H and A is in accord with that obtained by Jordan, we note that, in view of p. 241 of $Trait\acute{e}$ des substitutions,

$$[11\ 00\ \cdots\ 00\] \sim M_{\scriptscriptstyle 1},\ [10\ 00\ \cdots\ 00\] \sim L_{\scriptscriptstyle 1},\ [10\ 10\ 00\ \cdots\ 00\] \sim L_{\scriptscriptstyle 2}L_{\scriptscriptstyle 1}N_{\scriptscriptstyle 12}.$$

Also (*Traité*, p. 230), [11 00 \cdots] leaves $(x_1y_1\ x_2y_2\cdots)$ fixed if $x_1+y_1\equiv 0\pmod 2$, but replaces it by $(x_1+1\ y_1+1\ x_2y_2\cdots)$ if $x_1+y_1\equiv 1$, and hence may be designated

$$\mu_1: x_1'=y_1, y_1'=x_1.$$

Likewise, [10 00 \cdots] leaves $(x_1y_1 \ x_2y_2 \cdots)$ fixed if $y_1 \equiv 1$, but replaces it by $(x_1 + 1 \ y_1 \ x_2y_2 \cdots)$ if $y_1 \equiv 0$, and hence may be designated

$$\lambda_1: x_1' = x_1 + y_1 + 1.$$

Next, [10 10 00 \cdots] leaves $(x_1y_1x_2y_2\cdots)$ fixed if $y_1+y_2\equiv 1$, but replaces it by $(x_1+1\ y_1\ x_2+1\ y_2\ x_3y_3\cdots)$ if $y_1+y_2\equiv 0$, and hence may be designated

$$\lambda_2 \lambda_1 \nu_{12}$$
: $x_1' = x_1 + y_1 + y_2 + 1$, $x_2' = x_2 + y_1 + y_2 + 1$.

It follows that $N_{12} \sim \nu_{12}$. In view of the symmetry, $N_{ij} \sim \nu_{ij}$, etc.

THE UNIVERSITY OF CHICAGO, January 10, 1902.